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DYNAMICS OF THE LIQUID CORE OF THE EARTH
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An asymptotic theory is developed for the long-period bodily tides in an Earth model having a liquid core.
The yielding inside the core is found to be different in the case of a stable density stratification from the
case of an unstable stratification. In the latter case, a boundary layer is formed in which the stress de-
creases exponentially with depth below the core surface, the scale length of the exponent being propor-
tional to the frequency. In the limit of vanishing frequency the stress tends to zero through most of the
liquid core, except near the boundary layer at the surface, where it grows to a finite value. In case of a
stable stratification, the stress oscillates with depth below the surface of the core with a wavelength which
is proportional to frequency. An infinite number of ‘core oscillations’ with indefinitely increasing periods
exist in a liquid core with stable stratification, but in the case of an unstable stratification, none exist above
the fundamental spheroidal oscillation (53.7 min) for n = 2. The assertion made that a liquid core must
be in neutral equilibrium is not true. The displacements and stresses within a liquid core in long-period
tidal yielding are determinate, even in the static limit, and are not arbitrary. Love numbers are derived
for uniformly stable, neutral, and unstable liquid cores, as well as for a model with a rigid inner core.
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238 C.L.PEKERIS AND Y. ACCAD

1. INTRODUCTION
1.1. The Jeffreys—Vicente conjecture

In this investigation we aim at clarifying some difficulties which have arisen in the theory of the
dynamics of the Earth, stemming from the liquid state of the core. When the theory of the free
oscillations of the Earth was formulated (cf. Pekeris & Jarosch 1958; Alterman, Jarosch & Pekeris
1959), where the natural periods concerned were of the order of an hour or less, the fact that for
r < 0.545a the core of the Earth has a vanishing rigidity provided a simplification in the analysis
rather than a complication. Here a denotes the radius of the Earth, and, in the first instance, we
neglect the evidence for the existence of some rigidity in the ‘inner core’ forr < 0.1964. Difficulties
appeared when the theory was extended to longer periods, of the order of 12h, as in the case of
the yielding of the Earth in the bodily tide. Jeffreys & Vicente (1966) pointed out, for example,
that the values of Love numbers %, £, / published by Alterman ez al. (1959) for periods of 6 and 12h
and oo, respectively, are inconsistent with an expected quadratic variation of 2 with frequency o
of the form

h(o) = KO+ o2hd+ .., (1)
and similarly for £ and /.

Here /4 denotes the limiting value of the Love number 4 as o— 0. This Jeffreys—Vicente con-
Jecture is suggested by the form of the differential equations governing the oscillations of the
Earth. In a spherical system of coordinates, with origin at the centre of the Earth, let the com-
ponents of displacement (u,v,w) in the directions (r, 0, ¢) be given by

u=U0)S,(0.6), v=Vn 2l o TG, )
A= X(T) Sn(e, ¢)’ "ﬁ = P(f) Sn(g’ ¢), (3)
x= vyt ly, )

Here 3 denotes the perturbation in the gravitational potential. The unknown functions U(r),
V(r) and P(r) are subject to the differential system of the sixth order

. d d .
7o U+po P +g0p0 X = po 7 (& U) +3; (AX +2pU)

+'%[4Ur—4U+n(n+ 1) (~U—rV+3V)] =0, (5)

Po0? Vr+p0P—g0p0U+AX+rac-l—r [,u (V—~7V+g)] +’%[5U+ 3V—-V-2n(n+1)V]=0, (6)
Pe2p 20D b n(p, Ut p, ). (7)

Here the dot denotes differentiation with respect to r, A(r) and x(r) denote the Lamé constants
in the Earth model, and py(7), go(r) the undisturbed values of density and gravity. The dependence
on time was assumed to be given by a factor ei’¢. This system is to be solved subject to the con-
dition of regularity at the origin, and the boundary conditions to be satisfied at the surface r = a:

Yo = AX + Q/LU = T,,.(d), (8)

. V.U
y4=ﬂ(V—7+ )=0, (9)

r
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DYNAMICS OF THE LIQUID CORE OF THE EARTH 239
Yo+ [(n+1)[alys = (2n+1)go(a), (10)
where ys =P, ys=P—4nGp,U, (11)

G denoting the gravitational constant, and 7,,(a) the prescribed applied normal stress in the case
of surface loading. In the case of free oscillations, the right-hand sides of (8) and (10) vanish. In
the problem of the bodily tide the r.h.s. of (8) vanishes.

The frequency o enters equations (5) and (6) only through the factor g% Let us denote the
differential equations (5) and (6) with the o terms dropped as the static differential equations. A
solution (U®, V©, PO) of the static differential system, which satisfied the boundary conditions,
will be denoted as the static solution. Equations (5) and (6) suggest a solution by a perturbation
expansion in the small parameter o2 for U, V and P, of the form (1), with the static solution as the
leading term. It will be shown in the sequel that this form of an expansion for the core is valid
only when the density stratification in the liquid core is one of neutral equilibrium; i.e. when

Zo+Apolpf = 0. v(l?‘)
Equation (12) is known as the Adams—Williamson condition (Adams & Williamson 1923).
When the density stratification does not obey the Adams—Williamson condition, let us define a

class of polytropic liquid core models by

g0+ Abolp} = B 2o (13)
A model in which 4(r) > 0isstatically unstable, while in the case of negative 3(r), the stratification
is stable.

We shall designate a model in which f(r) is positive throughout the core as uniformly unstable,
and one in which f(r) is negative throughout as uniformly stable. It will be helpful to gain insight
into the dynamic behaviour of the liquid core if we analyse separately the three classes of uniformly
unstable, uniformly stable and uniformly neutral models. The following principle results were
found:

(a) In the case of uniformly unstable as well as uniformly neutral models, the Jeffreys—Vicente
conjecture applies to Love numbers.

(6) Uniformly unstable and uniformly neutral models have no free oscillations with periods
greater than about 53.7 min, which is the period of the fundamental spheroidal oscillation
forn = 2.

(¢) Uniformly stable models have an unlimited number of ‘core oscillations’ with periods
ranging from the fundamental of about 53.7 min to co.

(d) In the case of uniformly stable models, the Love numbers show a nearly linear variation
with o2, if we exclude the regions near the resonances.

1.2. The static solution in the case of a liquid core

That the liquidity of the core introduces peculiar difficulties in the static limit was already noted
when the equations were formulated in 1956. Putting the rigidity # equal to zero in equations
(5) and (6), we get

. d d
%o U+poP +gopo X —po g, (& U) + 3, (AX) = 0, (14)
0200 Vi + po P —pogo U+ AX = 0. (15)
Differentiating (15) with respect to 7 and subtracting (14) from the result, we get
o?[d(po Vr)[dr — po U]+ po(P — gy U) — gope X = 0, (16)

19-2
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240 C.L.PEKERIS AND Y. ACCAD

which, by (15), becomes .
(8o-+ ApolPD)X = oX(V+1V = U). (17)

In the static limit of o2 = 0, equation (17) requires that either

L go+Apo[pg = O, (18)
or II: X=0o, (19)
unless the term (V' 47V — U) grows indefinitely. The notes of 1956 (unpublished) read:
‘In case I the internal motion inside the core is indeterminate since you can have steady
circulation inside an adiabatic medium, provided the motion does not reach the boundaries.’
This is not helpful, since the motion does reach the boundaries.
Conditions (18) and (19) were first published by Longman (1963), who pointed out that if

condition (19) is assumed to hold in the static limit, then it is impossible to satisfy the boundary
conditions. Longman therefore concluded that:

(¢) Itis mandatory that the Adams—Williamson condition (18) be satisfied in the liquid core.
As a corollary of dictum (¢), Longman further concluded that:

(f) A uniform liquid core of finite compressibility is physically impossible because the first
term in (18) would be positive and the second would be zero.

1.8. The uniform liquid sphere

That dictum (f) is not valid can be demonstrated readily by considering the tidal yielding of
an Earth model consisting entirely of a liquid sphere of uniform density. In such a model

&(r) = 4r, A = §nGp,. (20)

An exact solution of equations (7), (14) and (15) which satisfies the boundary conditions (8), (9)
and (10) in the case of the bodily tide for n = 2 is

U=Br, V=14}Br, X=0, (21)
5
— 1 52),2 — —
P=B(A-%0%r% B 5= (52 )" (22)
The Love numbers are
_Ula) 5
h=—"=32 (502[24)° (23)
3
— 2l ) = O
k ={[P(a)/4a*] - 1} 2= (50%24)° (24)
[ = h. (25)
Resonance occurs when
0% =44 = sg-g——-"i“). (26)
Equation (26) is in agreement with Kelvin’s result (Lamb 1932):
o 2n(n—1)g (27)

70 = Tt Da’

which was derived for an incompressible fluid.
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DYNAMICS OF THE LIQUID CORE OF THE EARTH 241

Clearly, we have here a model which violates the Adams-Williamson condition (18), in con-
tradiction to propositions (¢) and (f), and yet responds to the tidal potential in a simple manner in
the whole range of frequencies starting with the static case and continuing up to the resonance
frequency.

1.4. The liquid core and the Adams—Williamson condition

That the Adams—Williamson condition cannot be mandatory for self-gravitating fluids is
exemplified by the structure of our own troposphere, where the temperature gradient is only
about 0.6 of the adiabatic value. If the condition of neutral equilibrium were mandatory, then
the theory of stellar models would be considerably simplified; ‘as it isn’t, it ain’t’.

Longman’s proposition (f) was adopted by Dahlen (1971 @) in his investigation of the excitation
of the Chandler wobble by earthquakes. Smylie & Mansinha (1971) reject the Longman proposi-
tion and get different results for the static solution. They, however, replace the adiabatic condi-
tion (18) by one allowing for a discontinuity in the radial component of displacement at the core boundary.
This is objected to by Dahlen (19715), since it invokes cavitation.

The problem of the static deformation of the Earth has come to the fore recently through the
work of Press (1965), who succeeded in measuring the change of the level of residual strain by
earthquakes at teleseismic distances. Our investigation shows that for periods of the order of the
bodily tide and longer, the yielding of the Earth depends on the structure of the liquid core.
Whether these low-frequency deformations will supply evidence which may allow us to discrimi-
nate between a density distribution in a liquid core which is stable (f < 0) and one which is
unstable (£ > 0) is at present doubtful. In the unstable case we find that the stress y, diminishes
exponentially with depth below the core surface. The depth-scale of the exponential drop is
proportional to o, so that in the limit of o> 0 the stress tends to become discontinuous at the core
boundary.

1.5. The boundary layer near the surface of the liquid core

Our resolution of the difficulty with the static limit in the case of a liquid core is as follows:

(¢) The dynamics of the liquid core of the Earth do not impose any restriction on its density
stratification.

(k) Inthe case of a uniformly unstable stratification (f > 0) the stress, as well as the divergence
of the displacement X, tend to zero with diminishing ¢ throughout the liquid core, except
for a boundary layer of diminishing thickness near the core surface. Within the boundary
layer the stress rises steeply from a near-zero value to a finite value.

The stress referred to here and elsewhere is the radial one, since in a liquid the transverse compo-
nents of stress are zero anyhow,

This result implies that in the case £ > 0, the condition (19) is approached through most of the
core as 0 — 0. The variation of stress within the boundary layer has a dynamic effect, so that, in
the static limit, the jump in stress at the core boundary is not as arbitrary as is the discontinuity in
tangential displacement V.

(k) Inthe case of a uniformly stable stratification (§ < 0) the stress has a term which oscillates
with depth below the core boundary, the depth scale varying like o. The stress and the
divergence of displacement X do not tend to zero, because of the excitation of the free core
oscillations.

(/) Inall cases, including one of neutral equilibrium, the yielding inside the core in the static
limit is determinate, and not arbitrary.
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242 C.L.PEKERIS AND Y. ACCAD

1.6. The boundary conditions for the static solution

When o - 0, equation (15) takes on the form

P—gyU=—(Afpy)X. (28)
If, in addition, we assume that X = 0, we have
Yo = Ty = AX = 0, (29)
1 .
U = Plg,, V=n(-n—+1—)(rU+2U), (30)

so that both U and V are determined from P, the latter being the solution of equation (7) which is
finite at the origin. The difficulty with the static solution was that the amplitude of the solution
of (7), together with the allowed discontinuity of V at the core boundary, gave only two arbitrary
constants out of the three needed to satisfy the three boundary conditions (8), (9) and (10) at the
surface 7 = a. The resolution of this difficulty is provided by the existence of the boundary layer
within which X changes very rapidly to the value at the top of the surface of the core. Equation
(28) shows that at the top of the boundary of the core we must have

P—g0U+:l/2/p8 =0, r= b) (31)

where y, is the stress defined in (8), p§ is the value of the density at the surface of the core, and b
denotes the radius of the core. Since P, U and y, are continuous at the core-mantle interface,
equation (31) provides a condition on the mantle solutions.

Let UO, VO, PO be the ‘static solution’ in the core obtained by putting

o2=0, X=0, (32)
solving (7) for P, and from it for U and V by (30).
Let 7(r) =y [ys” = [PO ~ 4xGpiUO] /PO, (33)
then the following relation is found to hold for the mantle solutions:
P —4nGpprU—y(b) P+ 4nGyyfgy = 0, 7 =b, ‘ (34)

where pi is the density at the bottom of the mantle.

A knowledge of the constant y(b) is all that is needed for the static solution in the mantle.
Equations (5) and (6), with the o2 terms dropped, together with (7), constitute a differential system
of the sixth order, for which six boundary conditions are required. Three are given at the surface
by (8), (9) and (10). The remaining three are given by (31) and (34) and by the condition

%:ﬂ(v_lr’J,U):o, r=b. (35)

r

2. DYNAMICS OF AN EARTH MODEL CONSISTING OF A UNIFORM LIQUID
CORE ENCLOSED BY A UNIFORM SOLID MANTLE

The dynamical effects of the liquidity of the core at vanishing frequencies are so complex that
it is advisable to present the analysis first for a simplified model before proceeding to the general
case of a model with continuously varying properties. We shall discuss the ‘a-model’ which was
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treated by Alterman ef al. (1959). It consists of an homogeneous solid mantle of constant para-

meters p,, A; and g, enclosing a liquid core with constant p, and A,. When these constants were

adjusted so as to equal the average values in the respective regions of Bullen’s model B, the funda-

mental period for n = 2 came out 56.0 min, as against the value of 53.7 for model Bullen B.
With p, in the core constant, put

4nGpy =4, o =024, Q = P|A, (36)
1 r
L(r) = f T (37)
Then within the core we have
go(") = dr, (38)
and (17) becomes ) ]
X =a(V+rV-U)=rU+2U—n(n+1)7, (39)
by (4). Equations (7) and (15) now read
i 2 1(n+1
G+2g-tirlo sy, (40)
(Ao/peA) X =1 U —arV — Q. (41)
The solution of (39) and (40) is
U=al+(n—a)(n+oa+1)L(r), (42)
‘ Q = Brv+3arly(r). (43)
Substituting (42) and (43) in (41), we get
(AofpeA) X =—Q+ (n—a) (n+a+1) (Q — Br*)[3e, (44)
by which (40) takes on the form
d*Q 2dQ n(n+1) pod nin+1)7 5
T Pl Q+—X0_ 4+a——T]Q—Kr”. (45)
Transforming to the non-dimensional variable
s =71la, (46)
d?Q 2dQ n(n+1) poAa? nn+1)7 .
we get PR T Q+ 2, 4+d—T]Q—LS . (47)
Let Q =Ds"+ T, D = Lalj/[p,Aa®(4o+a*—n—n?)]; (48)

then 7 satisfies the homogeneous equation

d*7" 2d7T n(n+1) poAa2[ nn+ 1)1 ..
FEIr TR T R ]T‘O'

(49)

As 0% 0, and with it «, the dominant terms in (49) become the first and the last, leading to the
asymptotic form

T ~ ge”s+ O(a), (50)

with v? = podan(n+1)[Ag0, v = (ad]o)[n(n+1)pe/A,]3. (51)

Asymptotically, the solution 7" varies like exp (0~1), and not like the form (1), underlying the
Jeffreys—Vicente conjecture.
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244 C.L.PEKERIS AND Y. ACCAD

The solution inside the liquid core consists, like the expression for @ in (48), of a regular part

plus a boundary layer term of the form (50). In the latter we retain only the leading asymptotic
-

term. With 5 = bja, (52)

and p denoting the mean density of the Earth, we have

Ula = Z, = Es”‘1+n—(n—r—29—5 ev(s=so), (53)
Vle =25 = Esn“1 +KI—T evls—so), (54)
n $
3ol
Plago(@) = Z; = (pulp) | Bdsn + L o], (55)

_ 3n(n+1)F
Yolg0(a) = Zs = (po[P) [E(nd —3)sn ~—’&;—2— C”‘S‘S‘*’] ; (56)
av?F
2 = = —— )’ = —_ .
Zy =X ==——¢b=, d=[1-0*nd] (57)

The two arbitrary constants £ and F, together with the jump in V7 at the core surface, provide
the three parameters needed to satisfy the three boundary conditions at the surface of
the Earth.

We note that the stress function Z, contains only the boundary-layer term which drops with
depth below the core surface as exp [(r—r,)/L], where

a 3o 90

L=5= dmaGpg[n(n+ 1) pofAgt T

(58)

for the constants of the a-model. Here L is expressed in kilometres and the period 7'in days. Thus,
in the case of the fortnightly tide, the stress drops to a fraction 1/e at a depth of 6 km below the
surface of the core.

We have solved for the Love numbers (z = 2) in the a-model for periods of 2, 4, 6, 12 and
24 h, using first the exact equations (5), (6) and (7), or the system of first-order differential
equations corresponding to them. The solutions were started by power-series expansions near the
origin, and then continued numerically by the Runge-Kutta method. The Love numbers are
given in table 1. The corresponding stress function Z,(s) is plotted in figure 1. An approximate
solution was also obtained by using, for the region inside the core, the asymptotic representations
given in (53) to (57). The asymptotic solutions are shown in figure 1 by the dotted lines. It is seen
that already at a period of 6 h the asymptotic solution gives a close approximation to the exact
solution, thus substantiating the reality of the boundary layer.

In any case, we have here a model which has a structure violating (18), and which shows a
tendency to approach condition (19) through most of the core as o— 0.

It is seen from figure 1 that as o— 0, Z, nearly vanishes throughout most of the liquid core,
except for a layer of decreasing thickness near the core boundary. One might be tempted to
assume that the boundary condition in the static limit is the vanishing of X in the liquid core,
coupled with a discontinuous jump in X at the bottom of the mantle. This jump in X, together
with the discontinuity in V, would allow for the satisfaction of the boundary conditions at the
Earth’s surface. A solution based on this assumption was carried out, and is designated as ‘static’
in table 1. It is seen that the ‘static’ values deviate appreciably from the limit indicated by the
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trend of the Love numbers up to a period of 24 h. If we take, for example, the values given for
T = 12 and 24h, and extrapolate to 7" =c0 by equation (1), we get

h=0.6904, k= 0.3535, [=0.1145, (59)

The value of Z, at the bottom of the mantle comes out 0.163 in the ‘static solution”’ as against
the value of 0.070 which holds in the exact solution for all periods greater than 3h.

The above results indicate that the boundary layer has a finite dynamic effect even though its
thickness vanishes in the limit. The proper boundary conditions to be applied at the core surface
can be deduced by examining the limiting form assumed by the asymptotic equations (53) to
(57) as o= 0. First, the factor e*®=0 approaches unity, giving, in place of (53),

Zy, = Esg7 +n(n+1) Ffs3. (60)
0.08 T T | T | I 1 1
006 —
= 004k 9 .
N 12,24h
6
002} —
6
- 12 —
24
L lossns A ! | ,
0 0.2 04 5o 06 08 10
s=1fa

Ficure 1. The function Z,(s) for the ‘a-model’ for periods of 6, 12 and 24 h.
—, exact solution; ¢ e e, asymptotic solution. n = 2.

TaBLE 1. LOVE NUMBERS /%, £, [ FOR THE ‘Q-MODEL’ AS
FUNCTIONS OF THE TIDAL PERIOD 7'

The ‘static’ values were obtained by assuming the stress Z, to vanish inside the core and to be discontinuous at
s = 5. B, £ and [© result from using the asymptotic equations (60) to (63). A®, etc., are defined in equation (1).

T
hour h k !
2 — 0.8766 0.4463 0.1320
4 — 0.7296 0.3728 0.1182
6 — 0.7076 0.3619 0.1161
12 — 0.6948 0.3556 0.1149
18 —_ 0.6924 0.3544 0.1147
24 e 0.6915 0.3540 0.1146
[e'e} hO, O, [ 0.6903 0.3535 0.1145
2, k@ (@ 2.408 x 10° 1.014 x 105 1.65 x 10*
static 0.5844 0.2983 0.1118

20 Vol. 273. A.
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Equation (54) is immaterial, since Vis discontinuous at s = s,. The remaining equations become

Z, = (pop) Eds, (61)
Zs = (polp) [E(nd —3) 55~ —3n(n+ 1) Fs], (62)
Zy = aviF(sy = pyda®n(n+ 1)F|A,s,. (63)

These equationsretain the two arbitrary constants £ and Fneeded in order to satisfy the boundary
conditions at the surface of the Earth.

The results of the solution obtained by using equations (60) to (63) in the core, with o = 0, are
given in table 1 under T =oco, and are designated as /A9, £ and {®. Using these values of A,
k9 and [© and the Love numbers for 7" = 24 h in equation (1), we get the values of 4?, £® and ®.
The resulting formulae reproduce the Love numbers to better than 1 9%, down to periods of 4 h.

In order further to substantiate the existence of the boundary layer, we have carried out a solu-
tion by assuming Z, to be zero for s < s" = 5,—4, and then allowing for a jump in Z, at s’. The
required jump in Z, came out very small. Thus in the case of 24 h and § = 2/r, corresponding to
s" = 0.517 (s, being 0.545), the required jump in Z, came out only —2.16 x 10~* as against 0.07
at the core boundary, and the resulting values of the Love numbers agreed with the exact values
to within 104,

According to Jeffreys & Vicente (1966), the relative difference between the static values of the
Love numbers and the values at a low frequency o should be of the order of 62/a3, oy denoting the
fundamental natural frequency of around 53.7min (= 1.9 x 10~3s~1). According to equation (1),
this implies that A®[A® ~ 1[0} = 2.8 x 105, It is seen from table 1 that this order of magnitude is
substantiated.

It is of interest to apply the solution obtained in this section for a homogeneous core to the
solution for a uniform sphere given in the previous section. When the core boundary reaches to
the surface r = q, then sy = 1 and p, = p. Applying the boundary conditions Z, = 0 (equation
(8)) at sy = 1 and using (63) we get F' = 0: there is no boundary layer in the case of the bodily
tide in a uniform liquid sphere. With the boundary-layer terms dropped in (60) and (62), we get
from the boundary condition (10) the Love numbers given in equations (23), (24) and (25). The
latter were derived for a finite value of the Lamé constant A, and since the divergence X was taken
to vanish, the stress y, = AX vanishes throughout the sphere. In Kelvin’s treatment (Lamb 1932)
the liquid is stated to be incompressible. This means that X = 0, but that AX may be finite if
A = 00. Our solution shows that in order to satisfy the boundary conditions, AX (= —p) must
vanish throughout the sphere.

3. POLYTROPIC MODELS OF THE LIQUID CORE OF THE EARTH

When we came to explore the yielding, at low frequencies, of realistic Earth models, the results
turned out to be more complicated than in the case of the uniform core shown in figure 1. In the
case of the ‘Gutenberg’ model, for example (Dorman, Ewing & Oliver 1960), we found that one
source of complication was the fact that the density stratification changes from a stable one in the
inner part of the core to an unstable one in the outer part. We found that the two classes of liquid
core models, with £(r) in (13) positive or negative respectively, exhibit different types of yielding
at low frequencies. We shall therefore discuss separately uniformly stable models with g(r) < 0,
on the one hand, and uniformly unstable models with £(r) > 0, on the other hand.
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As a basis, we adopted the model A of Landesman, Saté & Nafe (1965), as modified by
Pekeris (1966). The modification is minor throughout the core and reaches a maximum of only
4.6 9, in the mantle. Leaving the density distribution in the mantle as given, we now modified
the density distribution within the liquid core so as to keep £(r) in (13) constant throughout.
This was obtained by solving the simultaneous differential equations

dp, . Po
T - —;%;(1~ﬂ)go, (64)
d 2
20— gy +4nGpy. (65)

14

Polg cm™?

s=r1la
Ficure 2. Distribution of density p,(s) in the liquid core for uniform polytropic
models § = —0.2, 0, 0.2 (equation 13). ¢, Gutenberg model.

The solutions are constrained by the fixed value of the total mass of the Earth:

M =5.97T7Tx10¥g, (66)
and by the moment-condition

L= %nfapo(r)r4 dr = 0.330841Ma? (67)
0

I, is insensitive to the small changes introduced in the core, so that, effectively, the starting value
P(0) is constrained by condition (66) only. Figure 2 and table 2 show the density distributions
Po(s) within the core obtained for the cases f = —0.2, 0 and 0.2.

The £ = 0 model is close to the original M; model, while the others deviate from it by less than
3 %. Itis seen from table 3 that the residuals between the theoretical periods of free spheroidal
oscillation 7°¢ and the observed values 773 are of the order of magnitude as for model ;.

4, ASYMPTOTIC THEORY OF LONG-PERIOD BODILY TIDES FOR AN EARTH MODEL
HAVING A LIQUID CORE WITH CONTINUOUSLY VARYING PROPERTIES

In the case of a liquid core with continuously varying properties, the dynamical equations to
be solved are (7), (15) and (17). With

B(r) = (go+ 0 PolP3)[80s (1) = 10°[Bgy, (68)
() = f ;'(a/r)dr, I, = (1r%) e f :eTrV(n2+n-—oc—oZr—oc2)dr, (69)

20-2
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TABLE 2. EARTH MODEL M; (PEKERIS 1966) WITH UNIFORM POLYTROPIC

CORES FOR ff = —0.2, 0, 0.2 (SEE EQUATION (13))
model
~ A N M, p=-02 p= £ =02
T cp s Po Po Po Po
km km st km st gcm—2 gcm™3 gcm™S gcm™3
6371 6.30 3.55 2.840 — — —
6338 6.30 3.55 2.840 — — —
6338 8.16 4.65 3.386 — — —
6311 8.15 4.60 3.474 — — —
6271 8.00 4.40 3.488 —_ — -
6221 7.85 4.35 3.462 — — —
6171 8.05 4.40 3.413 — — —
6071 8.50 4.60 3.374 — — —
5958 9.06 5.00 3.569 — — —
5871 9.60 5.30 3.812 — — —
5771 10.10 5.60 4.047 — — —
5671 10.50 5.90 4.215 — — —
5571 10.90 6.15 4.373 —- — —
5471 11.30 6.30 4.502 — — —
5371 11.40 6.35 4.619 — — —
5171 11.80 6.50 4.852 — — —
4971 12.05 6.60 4.955 — — —
4771 12.30 6.75 5.040 — — —
4571 12.55 6.85 5.066 — — —
4371 12.80 6.95 5.072 - — —
4171 13.00 7.00 5.085 — —_ —
3971 13.20 7.10 5.090 — — —_
3771 13.45 7.20 5.092 — — —
3571 13.70 7.25 5.086 — — —
3491 13.70 7.20 5.239 — — —
3473 13.65 7.20 5.279 — — —
3473 8.04 —_ 10.087 9.795 10.020 10.224
3123 8.44 — 10.637 10.449 10.573 10.671
2776 8.90 —_ 11.082 11.023 11.051 11.051
2429 9.31 — 11.478 11.517 11.457 11.370
2082 9.63 — 11.809 11.939 11.799 11.635
1735 9.88 — 12.079 12.293 12.084 11.854
1388 10.08 _— 12.290 12,581 12.314 12.030
1318.6 10.11 — 12.321 12.630 12.354 12.060
1297.8 10.11 — 12.330 12.645 12.365 12.069
1283.9 10.17 — 12.337 12.654 12,373 12.075
1249.2 10.48 — 12.352 12.677 12.390 12.088
1214.5 10.76 — 12.368 12.697 12.407 12.101
1179.8 10.93 — 12.382 12.717 12.422 12.113
1145.1 11.04 — 12.400 12.735 12.437 12.124
1110.4 11.09 — 12.412 12.753 12.451 12.134
1075.7 11.12 — 12.429 12.770 12.464 12.144
1041.0 11.13 — 12.443 12.786 12.477 12,154
867.5 11.15 — 12.501 12.860 12.536 12,199
694.0 11.17 — 12.5561 12.921 12.584 12.235
520.5 11.17 —_ 12.590 12,968 12.621 12.263
347.0 11.16 — 12.614 13.003 12.648 12.284
173.5 11.15 — 12.629 13.023 12.665 12.296
0 11.15 — 12.635 13.030 12.670 12.300
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TasLE 3. THE RESIDUALS 773 — 72 BETWEEN THE OBSERVED PERIODS OF SPHEROIDAL OSCILLATIONS
79 AND THE COMPUTED PERIODS 775 FOR MODEL A; AND FOR THE POLYTROPIC MODELS
f =—0.2, 0 aND 0.2

model

; N . M, f=-02 f=0 B =02
> Ty—T; T, —T; T,—-T, T—T:
n S S S s S
2 3233.1 6.9 8.1 5.1 1.5
3 2139.2 4.4 4.6 2.9 1.1
4 1546.0 0.1 0.4 —~1.0 —-2.3
5 1188.4 —1.9 —-1.3 —-2.4 —3.4
6 962.3 —1.0 —0.7 —1.5 —~2.3
7 809.1 —-2.8 —2.6 —-3.2 —~3.7
8 707.7 0.2 0.3 0.0 -0.3
9 634.0 0.6 0.5 0.4 0.2
10 579.3 0.4 0.3 0.2 0.2
11 536.8 0.1 0.1 0.0 0.0
12 502.3 0.1 0.0 0.0 0.0
13 473.2 0.0 0.0 0.0 0.0
14 448.4 0.3 0.2 0.2 0.2
15 426.3 0.0 0.0 0.0 0.0
16 406.8 -0.1 —-0.2 -0.2 -0.2
(17) becomes ] ]
X =a(V+rV-U) =rU+2U0—-n(n+1)V, (70)
of which the solution is
U=aV+rl, (71)
Using (15) and (71), we get
PoU+poX = (p§[Ao) [F8o(U—aV) = P] = (p§[Ao) (BgorLy—P). (72)
dazp _ dP
Let Q= 2-a—§+27 —n(n+1)P+ 4G 2 )t P (73)
then (7) reads
Q = 4nG(pfA,) fgor s, (74)

from which it follows that

d(Ao Qe/pd fg,) [dr = 4nGerV(n? +n—a — o —ar)

= Ao QaeT[1pf fgo + €7d (A Q[p5 Bgo) [dr. (75)
Hence d(Xe Q[p3 fg,) [dr = 4nGn(n+ 1)1V + O(aV,aQ). (76)
We now express the left-hand side of (76) in terms of V. Eliminating U between (15), (70) and (71),
we get
peelhlle, (e By (o 0, ™)
Po LPo r Po Po”
which, by (74), gives
A,Q 4nG [ ap %Ay d ard, (rpo )]
= P+—2 V)+ V{——a}|. 78
s~ vl | Ty @ )
Let 2(r) = (n? +”)gopo (n®+n) po fgs _ V3(s) (79)

Agro Ayr2o? ot ?
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¢(r) being a large parameter for decreasing o, which becomes imaginary for stable density
stratifications, when £ < 0. We expect, subject to a posteriori verification, that, relative to the
middle term in brackets in (78), the first term is of order ¢—2 while the last term is of order ¢~
Neglecting these, we get from (76)

d ard, L ard, d? 4
T [Po(g0+06)l/po (rV)] =n(n+1)rV ~ —gEﬁ(TV) +0(c™), (80)
or d2(rV)dr? = ¢V, (81)
b
rV = Aexp{—f ¢(r) dr}+0(0—1). (82)
To within terms of order ¢~ we also have
’ b
e"Tfr erV(n*+n—a—ar—oa?)dr ~ [(n?+n)Afc] exp { —f adr}; (83)
0 r
hence, by (71),
2 b
U~ A(r;;l;n )exp{—f cdr}. (84)
It follows now from (70) that '
b
X~ aVe = (acfr)d exp{—f cdr}. (85)
Since, by (73), Q ~ r%*P, we get from (74) and (83)
2\ H2 b
P= 4WGA(;;; )p"ﬂg"exp{-—f adr} = 0(c3). (86)
0 r

Let U®, VO and PO be the solutions of equations (7), (15) and (17) obtained by putting both
o and X equal to zero; i.e.

P(O)"'gr PO _ ”(” + ])P“)) = 4nGp, UO), (87)
U® = POjg, X0 =0, (88)
VO = [rU® + 200 [(n+ n?). (89)
Then, with
v(5) = (aofo) [+ mpuiaclh, M(5) = exp (- [ o)1), (90)
we have U= EUO+FM|vs, (91)
V = EVO - FM/s(n?+n), (92)
P = EPO), (93)
X = (pogolXo?) FMs%, (94)
Yo = Ey® — (4nG[go) Ao X. (95)

Asin the case of the ¢ a-model’, the two arbitrary constants £ and F'suffice to satisfy the boundary
conditions.

We note that equations (91), (93) and (94) yield relation (31), which holds throughout the core.
Equation (31) is indeed the original (15) with the o term dropped. By eliminating the constant £
between (93) and (95), the latter takes on the form of the boundary condition (34). Longman
uses (31) as one of the boundary conditions, but he leaves the yielding inside the core as
undetermined and claims that no solution is possible when the core is not in neutral equilibrium.
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In the case of stable stratification, with # < 0, v(s) in (90) becomes imaginary, and the function
8
M(s) in (91) to (95) is to be replaced by sin (f ]V[ds) .
0
The important feature of the asymptotic equations (91) to (95) is that the divergence X has
only a term of the boundary-layer type. In the case of unstable stratifications, when v(s) is real,
M(s) goes down exponentially with depth below the core surface, while for stable stratifications,
when v(s) becomes imaginary, X oscillates with a wavelength which is proportional to o

|
- A

<
2 I T | I I T T
> ) ]
olm
7 =

o 0031 _
= Q) ‘
L O
= uwv
=17,] n B
S8
025 NI
250 N ;
oz p
T = P ]
B = by

001 . .0. —
L 12h .
Ny 24
L ooy TS| L ! ! |
0 0.2 04 sy 06 08 1.0
s=rla
Frcure 3. The stress function Z, for a uniformly unstable liquid core model

' with f = 0.1. —, Exact solution; e e e, asymptotic solution. n = 2.
_ P
<
’_l B
§> 5. DIsCUSSION OF RESULTS
olm We have determined the Love numbers for both stable and unstable uniform polytropic liquid
7 E core models, using, on the one hand, the exact equations (5) to (7) and, on the other hand, the
= O approximate asymptotic equations (87) to (85). The mantle, in all cases, is as in model M, shown
L O in table 2. The stress function Z, is shown in figures 3 and 4 for the unstable models with 8 = 0.1
~ o 2 g

and f = 0.2respectively. In the case of § = 0.1, shown in figure 3, the asymptoticsolution, given by
the dots, is distinguishable from the exactsolution at a period of 12 h, butnearly coincides with the
exact solution at higher periods. For the case # = 0.2, shown in figure 4, the asymptotic approxi-
mation is even better. It is clear that, as predicted, with increasing period the stress function
Z, tends to vanish throughout the core, except for a boundary layer near the core’s surface.
The distribution of the stress function Z, is quite different in a uniformly stable model, as is
shown in figure 5. Here Z, oscillates within the core, with an amplitude which increases toward
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T I T T I T T I
0.03— ]
—~ 002~ —
&
N
0.01f~ ]
12h
= 24
1 1 L | |
0 0.2 04 so 06 0.8 10
s=rla

Ficure 4. The stress function Z, for a uniformly unstable liquid core model
with # = 0.2. —, Exact solution; e ee, asymptotic solution. n = 2.

0.6
04k o2
®le
®le
e
o 02H ¢l 8
&& ° L] \d
b p‘ AN
0 « b V Vf\vf\
| * °
—~021-
| |_® | | | | | 1 | | ]
0 0.2 04 S50 0.6 0.8 1.0

s=rla

Ficure 5. The stress function Z, for a uniformly stable liquid core model
with f = ~0.2. T'= 47h. —, Exact solution; e e s, asymptotic solution. n = 2.
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TABLE 4. VALUES OF THE LOVE NUMBERS #, £, [ FOR THE LIQUID CORE POLYTROPIC MODELS WITH
£ =—0.2,0anD 0.2

The values for T = oo were derived from the asymptotic solution.

h k {

A A A
r hY r R ( )
£ =-02 0 0.2 —-0.2 0 0.2 —-0.2 0 0.2

0.6243 0.6253 0.6256 0.3068 0.3076 0.3084 0.0847 0.0847 0.0848
0.6162 0.6152 0.6154 0.3022 0.3028 0.3035 0.0840 0.0843 0.0843
0.6120 0.6127 0.6128 0.3009 0.3016 0.3023 0.0841 0.0842 0.0842
0.6118 0.6119 0.6119 0.3005 0.3012 0.3019 0.0840 0.0841 0.0842

R R
2 N
e

‘3()() 900 1200 15OU
T/min

Ficure 6. The Love numbers £, £, [ as functions of the period T for a
uniformly stable liquid core model with f = —0.2. n = 2.

8RR =iy

T

the centre. The tendency for the wavelength of oscillation to decrease with increasing period is
manifest.

The asymptotic solution given by the dots agrees well with the exact solution. It is to be noted
that the scale of figure 5 is much larger than of figure 4; indeed, within the mantle the stress
function Z, is identical in figures 4 and 5 to better than a few per cent. The Love numbers for
the polytropic models are given in table 4.

Figure 6 shows the Love numbers £, £, [ as functions of the period up to 25h. It is seen that
resonances occur at the periods of free oscillation which have a nearly constant spacing of about
4 h. The spacing is determined by the condition

fsulv(s)|ds =,
0

where v(s) is defined in (90). In the case of the unstable models, the Love numbers vary in a mono-
tone fashion, and very closely as represented by equation (1), as shown in figure 7. Indeed, the
hyk, 1 curves in figure 7 are close to the curves in figure 6 except for the neighbourhoods of the

21 Vol. 273. A,
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254 C.L.PEKERIS AND Y. ACCAD

resonances. Thefit of the Love numbers to the quadratic approximation (1) is due to the domin-
ance of the solution in the mantle.

The free oscillations for periods greater than the fundamental spheroidal mode of about 53.7
min, which we found for the stably stratified models, are ‘ core oscillations’ (Pekeris, Alterman &
Jarosch 1963), in the sense that their amplitude is confined primarily to the interior of the core.
This is shown by the plot of the function U(r) given in figure 8. It would be of interest to explore
the mechanical effects of the rapid drop in stress within the boundary layer at the top of the core.
It would also be of interest to obtain an accurate solution of the passage of an earthquake-pulse
in the boundary layer,

0620t~ k
h T ——————

0610~

0304}~ \
k

0.300f~

00851~
l

00841~

300600900 1200 1500
T/min

Frgure. 7. The Love numbers k, £, ! as functions of the period 7 for a
uniformly unstable liquid core model with # = 0.2. n = 2.

6 54 3 2
1.0r
08 curve  T/min
1 53.75
06 2 441.09
3 70041
J 04 4 96112
5 1215.71
1458.46
0.2 6
Ot
| 1 1 1 1 ! ] ] ! ] !
0 0.2 04 so 06 0.8 10

s=1fa

Ficure 8. The radial displacement U for the free spheroidal oscillations for
n = 2 in a uniformly stable liquid core model with £ = —0.2. n = 2.
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6. THE CASE OF A LIQUID CORE IN NEUTRAL EQUILIBRIUM
The asymptotic expansion developed in § 4 proceeds in inverse powers of the large parameter v,
defined in (90), or in powers of o/A%. This asymptotic expansion is not valid in the limit of neutral
equilibrium when g = 0. Writing (17) in the form

fg.X = o2(V4rV-U) = — 02T, (96)
we must have in the case f = 0 and o finite
U=1V+V. (97)
I I I T T I [ I T
0.03- i
= 002 -
N
0.01+ -
1 | l 1 | l | I l |
0 0.2 04 Sy 0.6 0.8 1.0
s=rla

Ficure 9. The stress function Z, for the case of a liquid core in
neutral equilibrium (f = 0), for periods of 24 and 48 h. n = 2.

Figure 9 shows the stress function Z, for this model. We note that not only in the mantle but also
in the core is the variation of Z, with period hardly distinguishable. Whatever variation does
exist for Z,(s) in the range of periods of 12 to 48 h can be represented fairly accurately by a pertur-
bation expansion

Zy(s) = ZP(5) + 02ZP(s) + ..., (98)
the second term being everywhere less than 3 x 105,

Inthelimitof o = 0 (and B = 0) the condition (97) is no longer necessary, but we would expect
it to persist by continuity. We have solved equations (15) (with the o*term dropped), (7) and
(97), and the resulting stress function came out close to Z{(s) which was deduced from the
solution for 24 and 48 h. This indicates that in the static limit of o = 0, condition (97) persistsin a
liquid core in neutral equilibrium. Equation (97) provides the missing relation needed in order to
make the yielding inside the core determinate. The resulting solution is illustrated in figure 10.
Our conclusion is therefore that a density stratification in neutral equilibrium is not mandatory for
a liquid core, but when neutral equilibrium happens to exist, the yielding in the static limit is

determinate, and not arbitrary.
21-2
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If w denotes the curl of the tidal displacement (, v, w), then it follows from (2) that

T 28, 738,
Y= e dg %= T (99)

where T=U-rV-7. (100)

0, =0,

In the case of neutral equilibrium, therefore, when the factor 7" vanishes (equation 97), the tidal
displacement becomes irrotational.

Ficure 10. The radial displacement Z,, the tangential displacement Z; and the perturbation in gravity
Z; for a liquid core in neutral equilibrium (f = 0). n = 2. U = aZ,; V = aZ,; P = agy(a)Z;.

7. EFFECT OF A RIGID INNER CORE

We have treated a model in which the material for 0 < r < 1250km has a small rigidity
p# = 0.5 x10"2(1 —or?) dyn/cm? For the case § = 0.2, shown in figure 11, the stress function Z,
exhibits the rapid drop below the core boundary which we found to be characteristic for uni-
formly unstable liquid core models. In the case of stable stratification, the expected oscillatory
behaviour of Z, in the liquid core, due to the existence of ‘core oscillations’, is shown in figure 12.
The Love numbers for these hard-core models are very close to those given in table 4 for the poly-
tropic models.

8. SUMMARY

The dynamical response of the liquid core of the Earth to tidal forces depends on whether the
density stratification in the liquid core is stable (f < 0), unstable (f > 0), or one of neutral
equilibrium, where £(r) is the stability parameter defined in (13).

In the case of neutral equilibrium, the tidal displacementsareirrotational (equations 97and 99).
The stress and displacements vary in a regular manner, as shown in figures 9 and 10. The variation
of the dynamical variables with the frequency o of the tidal potential is slight, and is represented
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004~
0.02—
B 12h
24
_ 0
N 2/ /19
—0.021
—0.04
L 1 ! ! ! l : ! ! | |
0 0.2 04 sg 06 0.8 10
s=rla

Figure 11. The stress function Z, for a model having an inner core (r < 1250 km, s < 0.196) with rigidity
# = 0.5x 10'2(1 —ar?) dyn[cm?, enclosed by a liquid core with § = 0.2. n = 2.

02
- 24h
0.1
12
0
=
N
—01f
12
—0.2
i 24
| | | 1 | ! | | | ;
0 0.2 04 5 06 0.8 10

s=rla

Ficure 12. The stress function Z, for a model having an inner core (r < 1250 km, s < 0.196) with rigidity
# = 0.5x10'% (1—ar?) dynfcm?, enclosed by a liquid core with # = —0.2. n = 2,
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well by the quadratic form (98), in the range of tidal periods of 12h to co. The vanishing of
vorticity (97) supplies the missing condition needed in order to make the distribution of dynamical
variables inside the core determinate. The Love numbers 4, k, [ vary quadratically with frequency
o (equation 1), and are shown in table 4. No free oscillations exist with periods greater than about
53.7 min corresponding to the spheroidal oscillation with n = 2,

In the case of an unstable density stratification (§ > 0) the vorticity factor 7"in the controlling
equation (96) does not vanish, and the motion is rotational. As o — 0 the divergence X of the tidal
displacements tends to zero through most of the core, except for a boundary layer near the core
surface whose thickness decreases with decreasing o. Within the boundary layer the stress rises
from a near-zero value to a finite value at the bottom of the mantle, as shown in figures 1, 3 and 4.

08 T T T T ! T T T
B 12,48h,00
12~/
06 48 -
{o o}
04} _
0.2 ~
| ] | | | l | | | |
0 0.2 04 S5 06 0.8 10
s=rla

Ficure 13. The radial displacement Z, = Ula for the ‘a-model’ for periods of 12 and 48 h.
—, Exact solution; e e e, asymptotic solution. n = 2. See figure 1.

In the limit of o = 0 the stress becomes discontinuous at the core surface. The radial displacement
U also tends to become discontinuous as o 0, as is shown in figures 13 and 14. The discontinuity
in Uis from a finite value inside the core surface to another finite value at the bottom of the mantle.
Within the boundary layer the dynamical variables fall exponentially with depth 4 below the
surface of the core as exp (—d/L), where L is proportional to the frequency. For the fortnightly
tide the exponent becomes unity at a depth d of the order of several km. The Love numbers vary
with the period of the tidal potential nearly quadratically as represented by equation (1), as is
shown in figure 7. As in the case of neutral equilibrium, there are no free oscillations with periods
greater than about 53.7 min.

The rapid variation of stress and of the radial displacement across the liquid boundary layer
near the surface of the core is likely to upset further the nascent instability due to the assumed
unstable density stratification. We may expect that convection would be initiated and penetrate
downward from the boundary layer under the action of the long-period tidal forces, and that the
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resulting mixing would tend to establish a state of neutral equlibrium at the top layers of the core.
Thetendency toward a discontinuity in the radial displacement in the liquid boundary layer in the
static limit may even result in mechanical deterioration of the mantle layer contiguous to the core.

I | I T T I I I 1
0.6+ . 12,48h,00 1
12 ! 48
- o] -—
04} N
zZ L |
020 -
L r | I ! l [ | ! !
0 0.2 04 o 08 08 10

s=rla

F1cure 14. The radial displacement Z;, = Ufa for a uniformly unstable core model with 8 = 0.2
for periods of 12 and 48 h. —, Exact solution; e e e, asymptotic solution. n = 2. See figure 4.

In the case of a stable density stratification in the liquid core (f < 0) the dynamical response
of the core to tidal disturbances is affected by the existence of an infinite number of free oscillations
whose periods increase indefinitely. The amplitudes of these long-period free oscillations are
confined to the core, as shown in figure 8; hence their designation as core oscillations. The Love
numbers are shown in figure 6, exhibiting resonance at the periods of the free core oscillations.
The periods of the core oscillations are separated by a nearly constant interval determined from

fsolv(s)lds = (101)

0
where v(s) is defined in (90). For large N the periods 7} of the core oscillations are given asymp-

totically by s
f [v(s)|ds = N. (102)
0

The motion is rotational, and the controlling equation (96) is satisfied by

Loy X|T = —0?—0, (103)
with X and 7" both having oscillatory distributions inside the core. This is exemplified by the
curve Z, = AX shown in figure 5. The period of 47 hours was chosen as lying midway between
resonances. Since the amplitude of X does not tend to decrease with decreasing o (figure 5), it
follows from (103) that the amplitude of the vorticity factor T grows as o — 0. This feature, which
is bound up with the existence of the core oscillations is likely to be affected by frictional forces.
In any case this is not the first time we are faced with an ‘infrared catastrophe’.

This research was supported by the Office of Naval Research under contract N00014-66-C-
0080.
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